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ABSTRACT
This paper presents an approach to combine competent cross-
over and mutation operators via probabilistic model build-
ing. Both operators are based on the probabilistic model
building procedure of the extended compact genetic algo-
rithm (eCGA). The model sampling procedure of eCGA,
which mimics the behavior of an idealized recombination—
where the building blocks (BBs) are exchanged without dis-
ruption—is used as the competent crossover operator. On
the other hand, a recently proposed BB-wise mutation op-
erator—which uses the BB partition information to perform
local search in the BB space—is used as the competent mu-
tation operator. The resulting algorithm, called hybrid ex-
tended compact genetic algorithm (heCGA), makes use of
the problem decomposition information for (1) effective re-
combination of BBs and (2) effective local search in the BB
neighborhood. The proposed approach is tested on different
problems that combine the core of three well known problem
difficulty dimensions: deception, scaling, and noise. The re-
sults show that, in the absence of domain knowledge, the
hybrid approach is more robust than either single-operator-
based approach.

Categories and Subject Descriptors: I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search;
I.2.6 [Artificial Intelligence]: Learning.

General Terms: Algorithms, Performance.

Keywords: Competent Genetic Algorithms, Probabilistic
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1. INTRODUCTION
Genetic Algorithms (GAs) that solve hard problems quickly,
reliably, and accurately are known as competent GAs [4]. In
contrast to traditional GAs, competent GAs use recombi-
nation operators that are able to capture and adapt them-
selves to the underlying problem structure. In this way, com-
petent GAs successfully solve decomposable problems with
bounded difficulties within a low-order polynomial number
of function evaluations [4].
Basically, competent GAs take problems that were in-
tractable to traditional GAs and renders them tractable re-
quiring in certain cases only a subquadratic number of func-
tion evaluations. However, for large-scale problems, even a
subquadratic number of fitness evaluations can be very de-
manding. This is especially true if the fitness evaluation re-
quires a complex simulation or computation. So, while com-
petence leads a problem intractable to tractable, efficiency
enhancement takes it from tractable to practical. One of the
efficiency-enhancement techniques for GAs is hybridization.
Hybridization typically involves combining the global-search
capabilities of genetic algorithms with local-search methods
that often includes domain- or problem-specific knowledge
[9, 8, 18]. While hybridization is often used in applying
GAs to solve real-world problems, systematic methods for
hybridizing and designing competent global and local-search
methods that automatically identify the problem decom-
position and important problem substructures are however
lacking.
Therefore, in this paper we present a hybridization of a
competent recombination operator that effectively exchanges
key substructures of the problem, and a competent muta-
tion operator that efficiently searches for best substructures
in the building blocks (BBs) partition. Specifically, we use
the probabilistic model-building methodology of extended
compact genetic algorithm (eCGA) [7] to determine the ef-
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fective problem decomposition and the important substruc-
tures (or building blocks) of the underlying search problem.
The probabilistic model, which automatically induces good
neighborhoods, is subsequently used for two distinct pur-
poses:

1. Effective recombination of BBs that provides rapid
global-search capabilities.

2. Effective search in the BB neighborhood that locally
provides high-quality solutions [15].

The key idea is to obtain the benefits from both approaches,
recombination without disrupting the BBs, and mutation
(local search) that rapidly searches for the best BBs in each
partition.
The paper starts by reviewing some of the work done on
the discussion “crossover versus mutation” and outlining the
motivation for the present work. Section 3 introduces the
extended compact GA, and its selectomutative counterpart
is described in the subsequent section. Next, in Section 5,
we describe the proposed hybrid extended compact genetic
algorithm (heCGA) and outline other possible hybridization
configurations. In Section 6, computational experiments
are performed, in different problem difficulty dimensions,
to evaluate the behavior of the proposed approach. Finally,
we present a summary and conclusions.

2. CROSSOVER VERSUS MUTATION
Since the early days in the genetic and evolutionary com-
putation (GEC) field, one of the hot topics of discussion
has been the benefits of crossover versus mutation and vice-
versa. Crossover and mutation search the genotype space in
different ways and with different resources. While crossover
needs large populations to effectively combine the necessary
information, mutation works best when applied to small
populations during a large number of generations.
In genetic algorithms, significant attention has been paid
to the design and understanding of recombination operators.
Systematic methods of successfully designing competent se-
lectorecombinative GAs have been developed based on de-
composition principles [4]. Mutation, on the other hand, is
usually a secondary search operator which performs a ran-
dom walk locally around a solution and therefore has re-
ceived far less attention. However, in evolutionary strategies
(ESs) [14], where mutation is the primary search operator,
significant attention has been paid to the development of
mutation operators. Several mutation operators, including
adaptive techniques, have been proposed [14, 17, 1, 2, 6].
The mutation operators used in ESs are powerful search
operators (specially for continuous domains), however, the
neighborhood information is still local around a single or few
solutions. In fact, when solving boundedly difficult GA-hard
problems, local neighborhood information is not sufficient,
and a mutation operator which uses local neighborhood re-
quires O(lk log l) function evaluations [10] (being l the prob-
lem size and k the BB size), which for moderate values of
k, grows extremely fast and the search becomes inefficient
compared to competent GAs.
Spears [19] did a comparative study between crossover
and mutation operators, and showed that there were some
important features of each operator that were not captured
by the other. These results provide a theoretical justification
for the fact that the role of crossover is the construction

of high-order BBs from low-order ones. Clearly, mutation
can not perform this role as well as crossover. However,
in terms of disruption, mutation can provide higher levels of
disruption and exploration, but at the expense of preserving
alleles common to particular defining positions [19].
Sastry and Goldberg [16] analyzed the relative advantages
between crossover and mutation on a class of determinis-
tic and stochastic additively separable problems. For that
study, the authors assumed that the crossover and mutation
operators had perfect knowledge of the BBs partition and
effectively exchanged or searched among competing BBs.
They used facetwise models of convergence time and popu-
lation sizing to determine the scalability of each operator-
based algorithm. The analysis shows that for additively
separable deterministic problems, the BB-wise mutation is
more efficient than crossover, while for the same problems
with additive Gaussian noise the crossover-based algorithm
outperforms the mutation approach. The results show that
the speed-up of using BB-wise mutation on deterministic
problems is O(√k logm), where k is the BB size and m is
the number of BBs. In the same way, the speed-up of using
crossover on stochastic problems with fixed noise variance is
O(√km/ logm).
Over the years, several researchers have identified that
the robustness and strengths of GAs lies in using crossover
and mutation. One possible approach to combine the best
features of both operators is hybridization, which has often
been used in GAs as an efficiency-enhancement technique
[8]. Hybrid GAs combine the typical steps of GAs with lo-
cal search methods that use some sort of domain or problem
specific knowledge. Many applications of GAs in industry
follow this approach in order to gain from the benefits of
hybridization. Hybrid GAs are also referred as memetic al-
gorithms [9] or genetic local search methods.
However, most hybridization methods are ad hoc and au-
tomatic methods of identifying and exploiting problem de-
composition in both global search and local search methods
are lacking. Therefore, in this paper, we investigate the
efficiency-enhancement capabilities of combining competent
recombination and mutation operators. Specifically, we fo-
cus on probabilistic-model-building-based operators to pro-
pose a competent hybrid GA. In probabilistic model build-
ing genetic algorithms (PMBGAs) the variation operators
are replaced by building and sampling a probabilistic model
of promising solutions. This procedure tries to mimic the
behavior of an ideal crossover operator, where the BBs are
mixed without disruption. One of the state-of-the-art PMB-
GAs is the extended compact genetic algorithm [7], that uses
marginal product models (MPMs) to represent the problem
decomposition. Based on this probabilistic model building
procedure, Sastry and Goldberg [15] recently proposed a
BB-wise mutation operator that performs local search in the
building block space. In the same line of work, we propose
a competent hybrid GA that combines a BB-wise crossover
operator with a BB-wise mutation operator via probabilis-
tic model building. We name this approach as probabilistic
model building hybrid genetic algorithm (PMBHGA). Note
that conceptually a PMBHGA is different from a typical
hybrid PMBGA in the sense that the local search that is
performed is based on the probabilistic model instead of us-
ing specific problem knowledge, which turn it into a more
general applicable hybridization.
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3. EXTENDED COMPACT GA
The extended compact genetic algorithm (eCGA) [7] is
based on the idea that the choice of a good probability distri-
bution for promising solutions is equivalent to linkage learn-
ing. The eCGA uses a product of marginal distributions on
a partition of genes. This kind of probability distribution
belongs to a class of probability models known as marginal
product models (MPMs). For example, the following MPM,
[1,3][2][4], for a 4-bit problem represents that the 1st and
3rd genes are linked, and the 2nd and 4th genes are indepen-
dent.
In eCGA, both the structure and the parameters of the
model are searched and optimized to best fit the data (promis-
ing solutions). The measure of a good MPM is quantified
based on the minimum description length (MDL) principle,
that penalizes both inaccurate and complex models, thereby
leading to an near-optimal distribution. Formally, the MPM
complexity is given by the sum of model complexity, Cm,
and compressed population complexity, Cp. The model com-
plexity, Cm, quantifies the model representation in terms of
the number of bits required to store all the marginal proba-
bilities. Let a given problem of size l with binary encoding,
have m partitions with ki genes in the ith partition, such
that

Pm
i=1 ki = l. Then each partition i requires 2ki − 1

independent frequencies to completely define its marginal
distribution. Taking into account that each frequency is of
size log2(n + 1), where n is the population size, the model
complexity Cm is given by

Cm = log2(n+ 1)
mX

i=1

(2ki − 1). (1)

The compressed population complexity, Cp, quantifies the
data compression in terms of the entropy of the marginal
distribution over all partitions. Therefore, Cp is given by

Cp = n
mX

i=1

2kiX
j=1

−pij log2(pij), (2)

where pij is the frequency of the jth gene sequence of the
genes belonging to the ith partition. In other words, pij =
Nij/n, where Nij is the number of chromosomes in the pop-
ulation (after selection) possessing bit sequence j ∈ [1, 2ki ]
for the ith partition. Note that a BB of size k has 2k pos-
sible bit sequences where the first is denoted by 00...0 and
the last by 11...1.
As we can see in Figure 1, the extended compact GA is
similar to a traditional GA, where the variation operators
(crossover and mutation) are replaced by the probabilistic
model building and sampling procedures. The offspring pop-
ulation is generated by randomly choosing subsets from the
current individuals, according to the probabilities of the sub-
sets stored in the MPM.
Analytical models have been developed for predicting the
scalability of PMBGAs [11, 13]. In terms of number of fit-
ness evaluations necessary to converge to the optimal so-
lution, these models predict that for additively separable
problems the eCGA scales subquadratically with the prob-
lem size: O(2k√km1.5 logm). Sastry and Goldberg [15] em-
pirically verified this scale-up behavior for the eCGA.

Extended Compact Genetic Algorithm (eCGA)

(1) Create a random population of n individuals.

(2) Evaluate all individuals in the population.

(3) Apply s-wise tournament selection [5].

(4) Model the selected individuals using a greedy MPM
search procedure.

(5) Generate a new population according to the MPM
found in step 4.

(6) If stopping criteria is not satisfied, return to step 2.

Figure 1: Steps of the extended compact genetic
algorithm (eCGA).

Extended Compact Mutation Algorithm (eCMA)

(1) Create a random population of n individuals and eval-
uate their fitness.

(2) Apply s-wise tournament selection [5].

(3) Model the selected individuals using a greedy MPM
search procedure.

(4) Choose the best individual of the population for BB-
wise mutation.

(5) For each detected BB partition:

(5.1) Create 2k − 1 unique individuals with all possible
schemata in the current BB partition. Note that
the rest of the individual remains the same and
equal to the best solution found so far.

(5.2) Evaluate all 2k−1 individuals and retain the best
for mutation in the other BB partitions.

Figure 2: Steps of the extended compact mutation
algorithm (eCMA).

4. PROBABILISTIC MODEL BUILDING BB-
WISE MUTATION ALGORITHM

The probabilistic model building BB-wise mutation al-
gorithm (BBMA) [15] is a selectomutative algorithm that
performs local search in the building block neighborhood.
Instead of using a bit-wise mutation operator that scales
polynomially with order k as the problem size increases, the
BBMA uses a BB-wise mutation operator that scales sub-
quadratically. For BB identification, the authors [15] used
the probabilistic model building procedure of eCGA. How-
ever, other probabilistic model building techniques can be
used with similar or better results. In this work, we restrict
ourselves to the probabilistic model building procedure of
eCGA, so from now on we refer to this instance of BBMA
as the extended compact mutation algorithm (eCMA). Once
the linkage groups are identified, an enumerative BB-wise
mutation operator [16] is used to find the best schema for
each detected partition. A description of the eCMA can be
seen in Figure 2.
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The performance of the BBMA can be slightly improved
by using a greedy heuristic to search for the best among
competing BBs in each partition. Even so, the scalability
of BBMA is determined by the population size required to
accurately identify the BB partitions. Therefore, the num-
ber of function evaluations scales as O(2km1.05) ≤ nfe ≤
O(2km2.1) [15, 13].
It should be also noted that on BBMA the linkage identi-
fication is only done at the initial stage. This kind of offline
linkage identification works well on problems of nearly equal
salience, however, for problems with non-uniformly scaled
BBs, the linkage information needs to be updated at regu-
lar intervals. This limitation will be empirically shown in
our experimental results.

5. PROBABILISTIC MODEL BUILDING HY-
BRID GENETIC ALGORITHM

In Sections 3 and 4, we presented two competent operators
for solving additively decomposable hard problems, based on
the probabilistic model building procedure of eCGA. Therein,
we use the same procedure to build the probabilistic model
and combine both operators in the same algorithm. Similar
to eCGA, our hybrid extended compact genetic algorithm
(heCGA) models promising solutions in order to be able to
effectively recombine the BBs and perform effective local
search in their space.
As we can see in Figure 3, the heCGA starts like the
regular eCGA (steps 1-4), but after the model is built the
linkage information is used to perform BB-wise mutation in
the best individual of the population. After that, heCGA
updates the BB frequencies of the model (found on step 4)
based on the BB instances of the mutated solution. This
is done by increasing the frequency of each BB instance of
the new best individual (the one that was mutated) by s and
decreasing each BB instance of the previous best solution by
s, where s is the tournament selection size. Note that we can
also replace the copies of the best individual by the mutated
one, with a similar overall effect. Finally, we generate a
new population according to the updated model, and repeat
these steps until some stopping criteria is satisfied.
It should be noted that eCGA, and consequently eCMA
and heCGA, can only build linkage groups with non-over-
lapping genes. However, the BB-wise mutation operator and
this BB-wise hybrid GA can be extended to other linkage
identification techniques that can handle overlapping BBs
such as the Bayesian optimization algorithm (BOA) [12] or
the dependency structure matrix driven genetic algorithm
(DSMDGA) [20].
As mentioned earlier, the performance of the BB-wise mu-
tation operator can be slightly improved using a greedy pro-
cedure to search for the best among competing BBs. This
can be particularly useful if we consider other ways to inte-
grate BB-wise mutation with BB-wise crossover. An alter-
native way to combine these operators would be to apply a
stochastic BB-wise mutation to all individuals in the popu-
lation. This way, instead of having the traditional bit-wise
mutation with a certain probability to be applied to each bit,
we would have a BB-wise mutation with a certain probabil-
ity to be applied to each BB partition in each individual.
In this kind of scheme it is important to spend less than
2k − 1 function evaluations when searching for each optimal
BB schema, specially if we use high probabilities of applying

Hybrid Extended Compact Genetic Algorithm
(heCGA)

(1) Create a random population of n individuals.

(2) Evaluate all individuals in the population.

(3) Apply s-wise tournament selection [5].

(4) Model the selected individuals using a greedy MPM
search procedure.

(5) Apply BB-wise mutation to the best individual.

(6) Update the frequencies of the MPM found on step 4
according to the BBs instances present on the mutated
individual:

(6.1) Increase the BB instances frequencies of the mu-
tated individual by s.

(6.2) Decrease the BB instances frequencies of the pre-
vious best individual by s.

(7) Generate a new population according to the updated
MPM.

(8) If stopping criteria is not satisfied, return to step 2.

Figure 3: Steps of the hybrid extended compact ge-
netic algorithm (heCGA).

BB-wise mutation.
Another approach is to heuristically choose which individ-
uals will be BB-mutated, and instead of mutating all BBs
just mutate one or some randomly (or again heuristically)
chosen. For example, a clustering criteria can be used where
only the best individual from each cluster is mutated. In
this paper, we limit our study to the first proposed hybrid
scheme using deterministic BB search and leave the other
possibilities as future work.

6. EXPERIMENTS
In this section we perform computational experiments in
various problems of bounded difficulty. Following a design
approach to problem difficulty [4], we test the described al-
gorithms on a set of problems that combine the core of three
well known problem difficulty dimensions:

1. Intra-BB difficulty: Deception;

2. Inter-BB difficulty: Scaling;

3. Extra-BB difficulty: Noise.

For that, we assume that the problem at hand is additively
decomposable and separable, such that

f(X) =
m−1X
i=0

fi(xIi), (3)

where Ii is the index set of the variables belonging to the
ith subfunction. As each subfunction is separable from the
rest, each index set Ii is a disjoint tuple of variable indexes.
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For each algorithm, we empirically determine the minimal
number of function evaluations to obtain a solution with at
least m − 1 building blocks solved, that is, the optimal so-
lution with an error of α = 1/m. For eCGA and eCMA, we
use a bisection method over the population size to search
for the minimal sufficient population size to achieve a target
solution. However, for heCGA an interval halving method is
more appropriate given the algorithm behavior as the pop-
ulation increases, as will be shown later (Figure 5). The re-
sults for the minimal sufficient population size are averaged
over 30 bisection runs. In each bisection run, the number
of BBs solved with a given population size is averaged over
another 30 runs. Thus, the results for the number of func-
tion evaluations and the number of generations spent are
averaged over 900 (30x30) independent runs. For all exper-
iments, tournament selection without replacement is used
with size s = 8.

6.1 Problem 1: Deception
As the core of intra-BB difficulty, deceptive functions are
among the most challenging problems for competent GA
candidates. This kind of functions normally have one or
more deceptive optima that are far away (in the genotype
space) from the global optimum and which misleads the
search in the sense that the attraction area of the deceptive
optima is much greater than the one of the optimal solution.
A well known deceptive function is the k-trap function [3]
defined as follows:

ftrap(u) =

�
1 if u = k
1− d − u ∗ 1−d

k−1
otherwise

(4)

where u is the number of 1s in the string, k is the size of the
trap function, and d is the fitness signal between the global
optimum and the deceptive optimum. In our experiments
we use d = 1/k. Considering m copies of this trap function,
the global boundedly deceptive function is given by

fd(X) =

m−1X
i=0

ftrap(xki, xki+1, . . . , xki+k−1). (5)

Figure 4 presents the results obtained for the boundedly
deceptive function. The number of BBs (or subfunctions) is
varied between 2 and 20, for k = 4. As we can see, eCGA
needs smaller populations than eCMA and heCGA to solve
the problem, however, takes more function evaluations than
both algorithms. This happens because in eCGA (1) the
BBs are discovered in a progressive way and (2) more gen-
erations are required to exchange the right BBs. Although
increasing the population size for eCGA accelerates the BB
identification process, additional generations are still needed
to mix the correct BBs into a single individual. Since eCGA
(like every selectorecombinative GA) always have to spend
this mixing time, relaxing the BB identification process (us-
ing smaller populations, thus saving function evaluations)
to a certain point seems to be the best way to tune eCGA
performance.
The scalability difference between eCGA and eCMA is
not surprising and was verified before [15, 16]. The sim-
ilarity between eCMA and heCGA performances leads us
to conclude that the best way to use heCGA on determinis-
tic and uniformly scaled boundedly deceptive functions, and
the problems that are bounded by this one, is to set a large
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Figure 4: Population size and number of function
evaluations required by eCGA, eCMA, and heCGA
to successfully solve m − 1 BBs for the boundedly
deceptive function with k = 4 and m = [2, 20]. The
results for population size are averaged over 30 runs,
while the number of function evaluations is averaged
over 900 independent runs.

enough population size to get the problem structure in the
first generation, and then perform BB local search to achieve
the global optimum.
These results suggest that there is no direct gain of heCGA
over eCMA for this problem, however, there is another ob-
servation that can be made. From a practitioner point of
view, heCGA is a more flexible search algorithm since it gets
the optimal solution within a bigger range of population size
values. In Figure 5, the number of function evaluations for
heCGA to get the target solution (for k = 4 and m = 10),
as the population size increases, is shown. Only population
sizes that solve m − 1 BBs on average (over 30 runs) are
shown in the plot. The plotted points form four increasing
lines. In each line, as the population increases the num-
ber of function evaluations also increases until it falls down
into a lower line and then keeps increasing again. This be-
havior repeats itself until the population size is enough to
discover all1 correct BB partitions in the first generation, be-
ing the problem solved by the enumerative BB local search
procedure of heCGA in the initial generation. Each discon-

1In our specific case, m − 1 partitions due to the stopping
criteria used.
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Figure 5: Number of function evaluations required
by heCGA to successfully solve m − 1 BBs for the
boundedly deceptive function with k = 4 and m =
10. The results are averaged over 30 runs. Only
population sizes that solve m−1 BBs on average are
shown.

tinuity between lines represents a decrease in the number of
generations necessary for heCGA to successfully solve the
problem. This happens because, as the population size is
increased, the model building procedure can capture more
and more correct BB partitions, improving the ability of BB
local search to quickly solve the problem.

6.2 Problem 2: Deception + Scaling
In this problem, the inter-BB difficulty is explored to-
gether with the intra-BB difficulty. Here, we use the bound-
edly deceptive function used above, but now each subfunc-
tion fitness contribution to the overall fitness is exponen-
tially scaled. The weight of each BB fitness contribution is
given by powers of 2, being our exponentially scaled bound-
edly deceptive function defined as

fds(X) =
m−1X
i=0

2iftrap(xki, xki+1, . . . , xki+k−1) (6)

This function has the interesting property that a high scaled
subfunction gives more fitness contribution than the sum of
all subfunctions below it. When solving this problem with
a GA in the initial generations, the signal that comes from
the low-salient BBs is negligible when faced with the de-
cision making that is being done between the high-salient
BBs. Whenever the higher BBs are solved, the next higher
scaled BBs will have their time of attention by the GA, and
so on. Given this property, the correct BB partitions can
only be discovered in a sequential way, which contrast with
the uniformly scaled case where the problem structure can
be captured in the first generation with a sufficient large
population size. Therefore, eCMA is not able to solve expo-
nentially scaled problems with reasonable population sizes,
as was point out before [15]. The model built based on the
selected initial random individuals will only be able to get
the high-salient BB partitions, failing the rest. As Sastry
and Goldberg [15] proposed for future work, the model of
eCMA has to be updated at a regular schedule to be able to
capture the BBs structure in a sequential manner.
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Figure 6: Population size and number of function
evaluations required by eCGA, eCMA, and heCGA
to successfully solve m−1 BBs for the exponentially
scaled boundedly deceptive function with k = 4 and
m = [2, 20]. The results for population size are av-
eraged over 30 runs, while the number of function
evaluations is averaged over 900 independent runs.

Figure 6 empirically shows that eCMA needs exponential
population sizes to achieve the target solution. In heCGA
the model is updated every generation and the BB-wise mu-
tation can benefit from that. Nevertheless, heCGA spends
approximately the same number of function evaluations to
solve the problem than the regular eCGA. In this case,
heCGA behaves similarly to eCGA, preferring a reasonable
population size, enough to get the most relevant BBs and
then keep going sequentially to the remaining ones.
Figure 7 shows the number of function evaluations that
heCGA needs to solve this problem as the population size
increases. Here, we can see that the number of function
evaluations grows almost linearly with the population size.
Since increasing the population size won’t reveal much more
correct BB partitions, the effect on the overall search process
is minor.
Looking at the behavior of heCGA on both uniformly
and exponentially scaled problems, we can observe distinct
dynamics for each problem. In the uniformly scaled case,
heCGA has a similar behavior to eCMA, which is the al-
gorithm that performs better. For the exponentially scaled
problem, heCGA changes completely its dynamics behav-
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Figure 7: Number of function evaluations required
by heCGA to successfully solve m − 1 BBs for the
exponentially scaled boundedly deceptive function
with k = 4 and m = 10. The results are averaged
over 30 runs. Only population sizes that solve m− 1
BBs on average are shown.

ing like eCGA, that is known to perform much better than
eCMA. Also in this case, no direct gain is achieved by heCGA
over the best algorithm. Nevertheless, we can observe what
seems to be the greatest advantage of the proposed ap-
proach: robustness. For both problems, heCGA obtains the
same performance as the one obtained by the best algorithm
for each domain.
Additionally, the same experiments were performed for

k = 5 and similar qualitative results were obtained, con-
firming the observed robustness for moderate increases on
subfunction size k. To get a better insight on these obser-
vations, we perform additional experiments with a problem
with additive exogenous noise, which is considered to be the
core of the extra-BB difficulty dimension.

6.3 Problem 3: Deception + Noise
Noise is a common factor in many real-world optimiza-
tion problems. Sources of noise can include physical mea-
surement limitations, incomplete sampling of large spaces,
stochastic simulation models, human-computer interaction,
among others. Furthermore, evaluation-relaxation techniques
are commonly used in genetic and evolutionary algorithms
(GEAs) for performance enhancement, bringing an addi-
tional source of noise to the original optimization problem.
Thus, analyzing the heCGA performance in noisy environ-
ments is important to strengthen the robustness claims ver-
ified for the first two problems.
For our experiments, we assume that the exogenous noise
follows a Gaussian distribution with mean 0 and variance
σ2

N . To make the problem even more challenging, we try to
optimize a noisy version of the uniformly scaled boundedly
deceptive function used before. This function is defined as
follows

fdn(X) = fd(X) + G(0, σ
2
N ) (7)

To overcome the noise with eCMA, each function evalua-
tion in the BB local search phase needs to be performed over
an average of function evaluations. The number of times
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Figure 8: Population size and number of function
evaluations required by eCGA, eCMA, and heCGA
to successfully solve m− 1 BBs for the noisy bound-
edly deceptive function with k = 4 and m = 10. The
results for population size are averaged over 30 runs,
while the number of function evaluations is averaged
over 900 independent runs.

that each individual needs to be evaluated, to allow correct
decision making between competing BBs, depends on the
noise variance. Therefore, to obtain the optimal results for
eCMA in noisy conditions we need to run 2 bisections meth-
ods, one over the initial population size and the other over
the number of samples that is necessary to correctly evaluate
an individual. First, we run a bisection method to get the
minimal population size that generates a model with at least
m−1 correct BB partitions. Then, for each population that
captures the target dependencies, a second bisection method
is performed over the number of fitness samples to obtain
the minimal number of times that an individual needs to be
evaluated, in order to achieve a final solution with the BBs
detected by the model optimally solved.
Figure 8 depicts the results obtained for a uniform scaled
boundedly deceptive function with additive noise for k = 4
and m = 10. As the noise-to-signal ratio σ2

N/(σf/d)2 in-
creases, two different scenarios can be identified. For small
values of noise, as σ2

N/(σf/d)2 → 0, the picture painted
here is somewhat similar to the deterministic case, where
eCMA and heCGA perform better than eCGA. When the
noise increases, eCGA starts to perform better than eCMA,
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which is expected given that crossover is likely to be more
useful than mutation in noisy environments [16]. However,
heCGA, which was behaving like eCMA (using bigger pop-
ulation sizes to solve the problem in the first generation) to
small noise values, starts performing similarly to eCGA, that
is known to be a best approach than eCMA to moderate-to-
high noise values. This change in heCGA behavior can be
better observed in the population size plot.
Note that in heCGA the BB local search phase doesn’t
use the averaging technique used in eCMA, since we want
to test heCGA in various difficulty dimensions as a black-
box method. Based on this results, the robust behavior
of heCGA still stands for noisy conditions, confirming the
observations made in Sections 6.1 and 6.2.

7. SUMMARY & CONCLUSIONS
In this paper, we have proposed a probabilistic model
building hybrid GA based on the mechanics of eCGA. The
proposed algorithm—the hybrid extended compact GA—
combines the BB-wise crossover operator from eCGA with
a recently proposed BB-wise mutation operator that is also
based on the probabilistic model of eCGA [15]. Basically,
heCGA makes use of the BBs partition information to per-
form (1) effective recombination of BBs and (2) effective lo-
cal search in the space of BBs. We performed experiments on
three different test functions that combine important diffi-
culty dimensions: deception, scaling, and noise. Our results
showed that, independently from the faced difficulty dimen-
sion(s), the hybrid extended compact GA obtained the best
performance, imitating the behavior of the best approach
(crossover-based or mutation-based) for each problem.
The results presented in this work indicate the robustness
of using both search operators—crossover and mutation—
in the context of PMBGAs, as it is known to be advanta-
geous for traditional GEAs. Given the observed robustness
of heCGA, one can think of applying it in a “black-box sys-
tem” basis, where the solver is expected to perform well on
problems bounded by the ones of our test suite.
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